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Abstract: Data anonymization is widely adopted for data privacy preservation in non interactive data publishing and 

sharing scenarios. It refers to hiding identity and/or sensitive data for owners of data records. Sharing the private data 

record in its most specific state poses a threat to individual privacy. This privacy of an individual can be effectively 

preserved while certain aggregate information is exposed to data users for diverse analysis and mining. This is mainly 

to investigate the scalability problem of large-scale data anonymization.  Data sets are generalized in a top-down 

manner until k-anonymity is violated in order to expose the maximum utility. This Top-Down Specialization is efficient 

for high scalability and privacy concerns. High scalable two-phase top-down approach to anonymize large-scale data 

using map reduce is proposed. 
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1. INTRODUCTION 

 

Cloud computing is regarded as an ingenious combination 

of a series of technologies, establishing a novel business 

model by offering IT services and using economies of 

scale. Participants in the business chain of cloud 

computing can benefit from this novel model. Many 

companies or organizations have been migrating or 

building their business into cloud due to security and 

privacy concerns[1][2]. Personal data like electronic health 
records and financial transaction records are usually 

deemed extremely sensitive although these data can offer 

significant human benefits if they are analyzed and mined 

by organizationssuch as disease research centres. For 

instance, Microsoft HealthVault, an online cloud health 

service, aggregates data from users and shares the data 

with research institutes. This can bring considerable 

economic loss or severe social reputation impairment to 

data owners. Hence, data privacy issues need to be 

addressed urgently before data sets are analyzed or shared 

on cloud[1]. Data sets have become so large 

thatanonymizing such data sets is becoming a considerable 
challenge for traditional anonymization algorithms to 

investigate the scalability problem of large-scale data 

anonymization. Large-scale data processing frameworks 

like MapReduce have been integrated with cloud to 

provide powerful computation capability for applications. 

In our research, we leverage MapReduce, awidely adopted 

parallel data processing framework, to address the 

scalability problem of the top-down specialization (TDS) 

approach for large-scale data anonymization. The TDS 

approach offers a good tradeoff betweendata utility and 

data consistency is widely applied for data anonymization. 
Most TDS algorithms are centralized which results in their 

inadequacy in handling largescaledata sets. Although some 

distributed algorithms have been proposed[20][22].They 

mainly focus on secure anonymization of data sets from 

multiple parties, rather than the scalability aspect. As the  

 

 

MapReduce computation paradigm is relatively simple it 

is still a challenge to design proper MapReduce jobs for 

TDS. 

In this paper, we propose a highly scalable two-phaseTDS 

approach for data anonymization based on MapReduce on 

cloud. To make full use of the parallel capability of 

MapReduce on cloud, specializations required in an 

anonymization process are split into two phases. In the 
first one, original data sets are partitioned into a group of 

smaller data sets, and these data sets are anonymized in 

parallel, producing intermediate results. In the second one, 

the intermediate results are integrated into one, and further 

anonymized to achieve consistent k-anonymous[23] data 

sets.  

A group of Map Reduce jobs is deliberately designed and 

coordinated to perform specializations on data sets 

collaboratively. Existing technical approaches for 

preserving the privacyof data sets stored in cloud mainly 

include encryption and anonymization. Current privacy-

preserving techniques like generalization can withstand 
most privacy attacks on one single data set, while 

preserving privacy for multipledata sets is still a 

challenging problem. Thus, for preserving privacy of 

multiple data sets, it is promising to anonymize all data 

sets first and then encrypt them before storing or sharing 

them in cloud. Usually, the volume of intermediate data 

sets is huge. Hence, we argue that encrypting all 

intermediate data sets will lead to high overhead and low 

efficiency when they are frequently accessed or processed. 

As such, we propose to encrypt part of intermediate data 

sets rather than all for reducing privacy-preserving cost[2]. 
A tree structure is modelled fromgeneration relationships 

of intermediate data sets to analyse privacy propagation of 

data sets. Based on such a constraint, we modelthe 

problem of saving privacy-preserving cost as a constrained 

optimization problem. This problem is then divided into 
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series ofsub-problems by decomposing privacy leakage 

constraints. The remainder of this paper is organized as 

follows: The next section reviews related work, and 

analyzes the scalability problem in existing TDS 

algorithms. In Section 3, we briefly present two-phase 
TDS approach. Section 4formulates Top-Down 

Specialization and elaborates algorithmic details of 

MapReduce jobs.Section 5 is implementation of this 

approach. We empirically evaluate our experimental 

results in Section 6. Finally, we conclude this paper and 

discuss future work in Section 7. 

 

2. RELATEDWORK AND PROBLEM ANALYSIS 

 

2.1 RELATED WORK 

In this work[1],Two-Phase Top-Down Specialization 
(TPTDS) approach to conduct the computation required in 

TDS in a highly scalable and efficient fashion. 

MapReduce is a programming model for processing large 

data sets with a parallel and distributed algorithm on a 

cluster. A MapReduce program is composed of a Map() 

procedure that performs filtering and sorting (such as 

sorting students by first name into queues, one queue for 

each name) and a Reduce() procedure that performs a 

summary operation (such as counting the number of 

students in each queue, yielding name frequencies). The 

MapReduce System is orchestrates by marshalling the 

distributed servers while running the various tasks in 
parallel and managing all communications and data 

transfers between the various parts of the system. It 

providesredundancy and fault tolerance for overall 

management of the whole process.  
 

In the work[2], Many anonymization techniques 

likegeneralization  have been proposed to preserve privacy 
but these methods alone fail to solve the problem of 

preserving privacy for multiple data sets. The main 

approachintegrates anonymization with encryption to 

achieve privacy preserving of multiple data sets. Moreover 

they consider the economical aspect of privacy preserving 

adhering to the pay-as-you-go feature of cloud computing.  
 

In the work[3], Distribute anonymization and 

centralizedAnonymizationuses with healthcare data has 

become avital requirement in healthcare system 

management. However, inappropriate sharing and usage of 

healthcaredata could threaten patients privacy. It 

generalize their information and privacy requirements to 

the problems of centralized anonymization and distributed 

anonymization and identify the major challenges that 

make traditional data anonymization methods not 

applicable. Furthermore it proposes a new privacy model 

called LKC-privacy to overcome the challenges and 

present two anonymization algorithms to achieve LKC-
privacy in both the centralized and the distributed 

scenarios. Experiments on real-life data demonstrate that 

the anonymization algorithms can effectively retain the 

essential information in anonymous data for data analysis 

and is scalable for anonymizing large datasets. Handling 

of the large scale data sets are very difficult. The distribute 

anonymization and centralized anonymization provides the 

privacy on cloud by Handling of the large scale data sets 

are very difficult. 

 

2.2 PROBLEM ANALYSIS 

Two- Phase Top- Down Specialization (TPTDS) approach 
to conduct the computation required in TDS in a highly 

scalable and efficient fashion. The two phases of the 

approach are based on the two levels of parallelization 

provisioned by MapReduce on cloud. Basically, 

MapReduce on cloud has two levels of parallelization, i.e., 

job level and task level. Job level parallelization means 

that multiple MapReduce jobs can be executed 

simultaneously to make full use of cloud infrastructure 

resources. Combining with cloud, MapReduce becomes 

more powerful and elastic as cloud can offer infrastructure 

resources on demand.For instance: Amazon Elastic 
MapReduce service. Task level parallelization refers to 

that multiple mapper/reducer tasks in a MapReduce job 

are executed simultaneously over data splits. To achieve 

high scalability and parallelizing multiple jobs on data 

partitions in the first phase but the resultant anonymization 

levels are not identical. To obtain finally consistent 

anonymous data sets, the second phase is necessary to 

integrate the intermediate results and further anonymize 

entire data sets. All intermediate anonymization levels are 

merged into one in the second phase. There exist domain 

values and that satisfy one of the three conditions is 

identical to is moregeneral than is more specific than. To 
ensure that the merged intermediate anonymization level 

never violates privacy requirements.  
 

The major contributions of our research are threefold. 

First, we formally demonstrate the possibility of ensuring 

privacy leakage requirements without encrypting all 

intermediate data sets when encryption is incorporated 

with anonymization to preserve privacy. Second, we 

design a practical heuristic algorithm to identify which 
data sets need to be encrypted for preserving privacy while 

the rest of them do not. Third, experiment results 

demonstrate that our approach can significantly reduce 

privacy-preserving cost over existing approaches, which is 

quite beneficial for the cloud users who utilize cloud 

services in a pay-as-you-go fashion. This paper is a 

significantly improved version of [1][2]. Based on[1], we 

mathematically prove that our approach can ensure 

privacy-preserving requirements. Further, the heuristic 

algorithm is redesigned by considering more factors. We 

extend experiments over real data sets. Our approach is 

also extended to a graph structure. 
 

In the literature of k-anonymity problem, there are two 

main models. One model is global recoding while the 

other is local recoding . Here, we assume that each 

attribute has a corresponding conceptual generalization 

hierarchy or taxonomy tree. A lowerlevel domain in the 

hierarchy provides more details than a higher level 
domain. For example, Zip Code 14248 is a lower level 

domain and Zip Code 142∗∗ is a higher level domain. 

We assume such hierarchies for numerical attributes too. 

In particular, we have a hierarchical structure defined with 

{value, interval, ∗}, where value is the raw numerical data, 
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interval is the range of the raw data and ∗ is a symbol 

representing any values. Generalization replaces lower 

level domain values with higher level domain values. For 

example, Age 27, 28 in the lower level can be replaced by 
the interval (27-28) in the higher level. 

 

3. CENTRALIZED AND DISTRIBUTED 

ANONYMIZATION 

 

The centralized anonymization method can be viewed as 

“integrate-then generalize” approach where the central 

government health agency first integrates the data from 

different hospitals then performs generalization. In this 

approach the distributed anonymization problem has two 

major challenges in addition to high dimensionality. First, 

the data utility of the anonymous integrated data should be 
as good as the data quality produced by the centralized 

anonymization algorithm. Second, in the process of 

anonymization, the algorithm should not reveal more 

specific information than the final anonymous integrated 

table.  

In this, we propose a top-down specialization algorithm to 

achieve L KC-privacy. The general idea is to anonymize a 

table by a sequence of specializations starting from the 

topmost general state in which each attribute has the 

topmost value of its taxonomy tree. We assume that a 

taxonomy tree is specified for each categorical attribute in 
Q ID. A leaf node represents a domain value and a parent 

node represents a less specific value. 
 

For a numerical attribute in Q ID, a taxonomy tree can be 

grown at runtime, where each node represents an interval, 

and each non-leaf node has two child nodes representing 

some optimal binary split of the parent interval. A 
specialization, written v → child(v), where child(v) 

denotes the set of child values of v, replaces the parent 

value v with the child value that generalizes the domain 

value in a record. A specialization is valid if the 

specialization results in a table satisfying the anonymity 

requirement after the specialization. A specialization is 

performed only if it is valid. The specialization process 

can be viewed as pushing the “cut” of each taxonomy tree 

downwards. A cut of the taxonomy tree for an attribute Di, 

denoted by Cuti, contains exactly one value on each root-

to-leaf path.  Our specialization starts from the topmost cut 

and pushes down the cut iteratively by specializing some 
value in the current cut until violating the anonymity 

requirement. In other words, the specialization process 

pushes the cut downwards until no valid specialization is 

possible. Each specialization tends to increase data utility 

and decrease privacy because records are more 

distinguishable by specific values. We define two utility 

measures depending on the information requirement to 

evaluate the “goodness” of a specialization. Here, we 

assume that BTS only receives one version of the sanitized 

data for a given dataset anonymized by using one of the 

following Score functions. 
 

Case 1: Score for Classification Analysis. For the 

requirement of classification analysis, we use information 

gain, denoted by InfoGain(v), to measure the goodness of 

a specialization. Our selection criterion, Score(v), is to 

favor the specialization v → child(v) that has the 

maximum InfoGain(v): 

Score(v) = InfoGain(v). 

InfoGain(v): Let T[x] denote the set of records in T 
generalized to the value x. Let f req(T[x], cls) denote the 

number of records in T[x] having the class cls Note that 

|T[v]| = c |T[c]|, where c ∈ child(v). We have 

InfoGain(v) = E(T[v]) − c |T[c] / |T[v]| |E(T[c]), 

where E(T[x]) is the entropy of T[x] 

E(T[x]) = −clsfreq(T[x], cls) 

freq(T[x], cls) × log2 

|T[x] || T[x]| 
 

Intuitively, I(T[x]) measures the mix of classes for the 

records in T[x], and InfoGain(v) is the reduction of the 

mix by specializing v into c ∈ child(v). For a numerical 

attribute, the specialization of an interval refers to the 

optimal binary split that maximizes information gain on 

the Class attribute. 
 

Case 2: Score for General Data Analysis. Sometimes, the 

data is shared without a specific task. In this case of 

general data analysis, we use discernibility cost to measure 

the data distortion in the anonymous data table. The 
discernibility cost charges a penalty to each record for 

being indistinguishable from other records. For each 

record in an equivalence group qid, the penalty is |T[qid]|. 

Thus, the penalty on a group is |T[qid]|. To minimize the 

discernibility cost, we choose the specialization v → 

child(v) that maximizes the value of |T[qidv ]|2 Score(v) = 

qidv over all qidv containing v. 

 

4. TOP-DOWN SPECIALIZATION 

 

In Top-Down Specialization all the attribute values are 
initialized to the root value of the hierarchy tree. The 

specialization is carried out iteratively over the attribute 

values until the k -anonymity is violated. The 

specialization is performed by replacing parent attribute 

value by its child value in Taxonomy Tree. 

 

ALGORITHM: SKETCH OF TWO-PHASE TDS 

(TPTDS). 
 

Input: Data set D, anonymity parameters k, kIand the 

number of partitions p. 

Output: Anonymous data set D*. 

1. Partition D into Di ,1<i <p. 

2. Execute MRTDS(Di , kI , AL0)AL0
I , 1 <i < p in 

parallel as multiple MapReduce jobs. 

3. Merge all intermediate anonymization levels into one, 
merge (AL’

I, ,AL’2,…,AL’P)ALI. 

4. Execute MRTDS (D,k,ALI)AL* to achieve k-

anonymity. 

5. Specialize D according to AL*, Output D*. 

 

4.1 OPTIMIZED BALANCING SCHEDULING 

The OBS called optimized balancing scheduling. 

Scheduling map tasks to improve data locality is crucial to 

the performance of MapReduce. Many works have been 
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devoted to increasing data locality for better efficiency. 

However, to the best of our knowledge, fundamental limits 

of MapReduce computing clusters with data locality, 

including the capacity region and theoretical bounds on 

the delay performance have not been studied. In this paper 
it addresses these problems from a stochastic network 

perspective. 

 

4.2 DATA PARTITION 

The data partition is performed on the cloud. Here it 

collects the large no of data sets. It are split the large into 

small data sets. Then provides the random no for each data 

sets. Partitioning is the process of determining which 

reducer instance will receive which intermediate keys and 

values. Each mapper must determine for all of its output 

(key, value) pairs which reducer will receive them. It is 
necessary that for any key, regardless of which mapper 

instance generated it, the destination partition is the same. 

If the key cat is generated in two separate (key, value) 

pairs, they must both be reduced together. It is also 

important for performance reasons that the mappers be 

able to partition data independently they should never 

need to exchange information with one another to 

determine the partition for a particular key. It is necessary 

that for any key, regardless of which mapper instance 

generated it, the destination partition is the same. If the 

key cat is generated in two separate (key, value) pairs, they 

must both be reduced together. It is also important for 
performance reasons that the mappers be able to partition 

data independently they should never need to exchange 

information with one another to determine the partition for 

a particular key. 

 

ALGORITHM: DATA PARTITION MAP & 

REDUCE. 
 

Input: Data record (IDr, r), r € D, partition parameter p. 

Output: Di, 1 ≤ i ≤ p. 

Map:Generate a random number rand,where 1 ≤ rand ≤ p; 

emit (rand, r). 
 

Reduce: For each rand, emit (null, list(r)). 
Once partitioned data sets Di, 1 ≤ i ≤ p, are obtained, we 

run MRTDS (Di,kI ,AL0) on these data sets in parallel to 

derive intermediate anonymization levels AL*I ,1 ≤ i ≤ p. 

 

4.3 MERGING 

All intermediate anonymization levels are merged into 

onein the second phase. The merging of anonymization 

levels is completed by merging cuts. Cuta in AL’aandCutb 

in AL’bbe two cuts of an attribute. There exist domain 

values qa€Cuta and qb€ Cutb that satisfy one of the three 

conditions: qa is identical to qb, qa is more general than qb, 

or qa is more specific than qb. To ensure that the merged 
intermediate anonymization level ALI never violates 

privacy requirements, the more general one is selected as 

the merged one, for example, qa will be selected if qais 

more general than or identical to qb. For the case of 

multiple anonymization levels, we can merge them in the 

same way iteratively. The following lemma ensures that 

ALI still complies privacy requirements. 

Lemma 1. If intermediate anonymization levels AL’i, 1 ≤ i 

≤ p, satisfy kIanonymity, the merged intermediate 

anonymization level ALI will satisfies k’-anonymity, 

where  

ALI  
merge( (AL’1,AL’2,….,AL’p)), k

J ≥ kI . 
 

Thisapproach can ensure the degree of data privacy 

preservation, as TPTDS produces k-anonymous data sets 

finally. Lemma 1 ensures that the first phase produces 

consistent anonymous data sets that satisfy higher degree 

of privacy preservation than users specification. Then 

MRTDS can further anonymize the entire data sets to 

produce final k-anonymous data sets in the second phase. 

 

4.4 BIG DATA ANALYTICS SPECIALIZATION 

Big Data Analytics specialization will prepare students to 
address real-life problems along each of those dimensions. 

For instance, it is not uncommon for digital archives to 

store terabytes and even petabyte of data in hundreds of 

data repositories supporting thousands of applications. 

Maintaining such data repositories requires knowledge in 

ultra-large scale distributed systems, virtualization 

technologies, cloud computing, unstructured and semi-

structured data management, optimization methods based 

on data replication and data migration, as well as in 

advanced data protection techniques. The exponential 

growth of the amount of data calls for competence in 

advanced dynamic data processing techniques includes 
scalable data processing methods and technologies, data 

stream management and large-scale process monitoring, 

modeling and mining. In order to comprehensively 

analyze such volumes of information from disparate and 

various disciplines, information professionals will need to 

master advanced data integration techniques and business 

intelligence tools, crowd sourcing technologies, large-

scale information fusion, data intensive computation and 

semantic data management. After gets the intermediate 

result those results are merged into one. Again applies the 

anonymization on the merged data is called specialization. 
 

ALGORITHM: DATA SPECIALIZATION MAP & 

REDUCE. 
 

Input:Data record (IDr, r), r € D. ; Anonymizationlevel 

AL*. 

Output: Anonymous record (r*, count). 

Map: Construct anonymous record r* = p1, (p2,….,pm,sv), 

pi, 1 ≤ i ≤ m, is the parent of a specialization in current AL 

and is also an ancestor of vi in r; emit (r*, count). 

Reduce: For each r*, sum  ∑count; emit (r*, sum). 

 

4.5 ANONYMIZATION 

Anonymization of data can mitigate privacy and security 

concerns and comply with legal requirements. 

Anonymization is not invulnerable countermeasures that 

compromise Current anonymization techniques can expose 

protected information in released datasets. After gets the 

individual data sets it applies the anonymization. The 

anonymization means hide or remove the sensitive field in 

data sets. Then it gets the intermediate result for the small 

data sets. The intermediate results are used for the 
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specialization process. Data anonymization algorithm that 

converts clear text data into a nonhuman readable and 

irreversible form including but not limited to pre-image 

resistant hashes and encryption techniques in which the 

decryption key has been discarded. 
 

4.5.1 ANONYMIZATION ALGORITHM 
 

DA(D,I,k,m) 

1. scan D and create count-tree 

2. initializeCout 

3. for each node v in preorder count-tree tranversal do 

4. if the item of v has been generalized in Cout then 

5. backtrack 

6. if v is a leaf node and v.count<k then 

7. J:=itemset corresponding to v 

8. find generalization of items in J that make J k-
anonymous 

9. merge generalization rules with Cout 

10. backtrack to longest prefix of path J,wherein noitem 

has been generalized in Cout 

11. ReturnCout 

12. for i :=1 to Cout do 

13.  initialize count=0 

14. scan each transactions in Cout 

15. Seperate each item in a transaction and store it in p 

16.  Increment count 

17.  for j:=1 to count do 
18.  for all g belongs Cout do 

19.  compare each item of p with that of Cout 

20. if all items of i equal to cout 

21. Increment the r 

22. Ifka equal to r then backtrack to i 

23. else if r greater than ka then get the index positionof 

the similar transactions 

24. make them NULL until ka equal to r 

25. else update the transactions in database 

 

5. IMPLEMENTATION 

 
We propose a highly scalable two-phase TDS approach for 

data anonymization based on MapReduce on cloud. To 

make full use of the parallel capability of MapReduce on 

cloud, specializations required in an anonymization 

process are split into two phases. In the first one, original 

data sets are partitioned into a group of smaller data sets, 

and these data sets are anonymized in parallel, producing 

intermediate results. In the second one, the intermediate 

results are integrated into one, and further anonymized to 

achieve consistent k-anonymous data sets. We leverage 

MapReduce to accomplish the concrete computation in 
both phases. A group of MapReduce jobs is deliberately 

designed and coordinated to perform specializations on 

data sets collaboratively. First, we creatively apply 

MapReduce on cloud to TDS for data anonymization and 

deliberately design a group of innovative MapReduce jobs 

to concretely accomplish the specializations in a highly 

scalable fashion. Second, we propose a two-phase TDS 

approach to gain high scalability via allowing 

specializations to be conducted on multiple data partitions 

in parallel during the first phase. 

As an example, table 1 is to be anonymized with 

Anonymization Level (AL) set to 2 and the set of Quasi 

Identifiers as QI = {AGE, SEX, ZIP, PHONE}. The quasi-

identifiers are identified by the organization according to 

their rules and regulations. 
 

Table 1: Anonymization level 
 

Name Age Sex Zip Phone Disease 

Ali 20 M 190014 9419 Bronchitis 

Bale 30 M 190001 9592 Lung 
Cancer 

Calvin 40 M 192231 9823 STI 

Doris 50 F 190001 8988 Skin 
Allergy 

Elle 75 F 190002 8088 Skin 
Allergy 

  

The NAME attribute here is "Sensitive", so we would like 

to “suppress” this attribute before anonymizing the above 

table. After suppression the table 2 will look like as below 
 

Table 2: AL after suppression 
 

AGE SEX ZIP PHONE DISEASE 

20 M 190014 9419 Bronchitis 

30 M 190001 9592 LungCancer 

40 M 192231 9823 STI 

 

Anonymizing data through Top-Down Specialization each 

attribute value will be initialized to the root of Taxonomy 

Tree in table 3 will look like as below 
 

Table 3: Root of taxonomy tree 
 

AGE SEX ZIP PHONE DISEASE 

[0 - 100] ANY ****** **** Bronchitis 

[0- 100] ANY ****** **** Lung Cancer 

[0 - 100] ANY ****** **** STI 

[0 - 100] ANY ****** **** Skin Allergy 

[0 - 100] ANY ****** **** Skin Allergy 

 

The data in the above table is highly privacy preserved, 

but the data utility is very low. The data is highly 

anonymized. We make a note here that Data 

Anonymization is not only the single goal that we are 

trying to achieve through Anonymization. We also make 

sure that data utility is high enough to make the 

information useful for mining. 

The Top-Down Specialization Algorithm will iteratively 

specialize the attribute values till the k  Anonymization is 
violated.The given table after anonymizing it for k=2 in 

table 4 will look like 
 

Table 4: Anonymized dataset 
 

AGE SEX ZIP PHONE DISEASE 

[0 - 50] M 1900** 9*** Bronchitis 

[26-50] M 190001 9*** LungCancer 

[26-50] M 19***** 9*** STI 

[26-50] F 190001 8*** SkinAllergy 

[51-100] F 19000* 8*** SkinAllergy 
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6. EXPERIMENTAL RESULTS 

 

Three groups of experiments in this section evaluate the 

effectiveness and efficiency. In the first one, TPTDS with 

CentTDSsays the perspectives of scalability and 
efficiency. In the other two, the trade-off between 

scalability and data utility via adjusting configurations. 

The execution time and ILoss are affected by three factors, 

namely the size of a data set (S), the number of data 

partitions (p), and the intermediate anonymity parameter 

(kI). How the three factors influence the execution time 

and ILoss of TPTDS is observed in the following 

experiments in Fig 1.  
 

 
Fig 1: Change of execution time w.r.t. data size: TPTDS 

versus CentTDS. 

 

In the first group, it measure the change of execution time 
TCent and TTP with respect to S when p = 1. The size S 

varies from 50 MB to 2.5 GB. The 2.5 GB data set 

contains nearly 2:5 * 107 data records. The data sets are 

big enough to evaluate the effectiveness of approach in 

terms of data volume or the number of data records. ILCent 

= ILTP because TPTDS is equivalent to MRTDS when p = 

1.The results of the first group of experiments are depicted 

in Fig 6.9 shows the change of TTP and TCent with 

respect to the data size ranging from 50 to 500 MB. From 

Fig 2 can see that both TTP and TCent go up when data 

size increases although some slight fluctuations exist.  
 

 
Fig 2: Change of execution time and ILoss w.r.t. 

intermediate anonymity parameter. 

 

The fluctuations are mainly caused by the content of data 

sets. TCent surges from tens of seconds to nearly 10,000 

seconds, while TTP increase slightly. The dramatic 

increase of TCent illustrates that the overheads incurred by 

maintaining linkage structure and updating statistic 

information rise considerably when data size increases. 

Before the point S = 250 MB, TTP is greater than TCent. 

But after the point TTP is greater than TCent, and the 

difference between TCent and TTP becomes larger and 

larger with the size of data sets increasing. The trend of 

TTP and TCent indicates in Fig 3 that TPTDS becomes 
more efficient compared with CentTDS for largescale data 

sets. 

 

 
Fig 3: Change in execution time and ILoss w.r.t. number 

of partitions 

 

In our experiments, CentTDS fails due to 
insufficientmemory when the size of data set is greater 

than 500 MB. Hence, CentTDS suffers from scalability 

problem for largescale data sets. To further evaluate the 

scalability andefficiency of TPTDS, we run TPTDS over 

data sets withlarger sizes. Fig. 6.9 shows the change of 

TTP with respect to the data size ranging from 500 MB to 

2.5 GB. It can be seen from Fig 6.9 that TTP grows 

linearly and stably with respect to the size of data sets. 

Based on the tendency of TTP, we maintain that TPTDS is 

capable of scaling over large-scale data sets efficiently. 

 

7. CONCLUSIONS AND FUTURE WORK 

 

In this paper, we have investigated the scalability problem 

of large-scale data anonymization but Top-Down 

Specialization approach using MapReduce on cloud. 

Datasets are partitioned and anonymized in parallel and 

intermediate results are merged and anonymized to 

produce consistent k-anonymous data sets. 

 

In cloud environment, the privacy preservation for data 

analysis, sharing and mining is a challenging due to larger 

volume of data sets. It is scalable privacy preservation 
aware analysis ad scheduling and optimized balanced 

scheduling strategies toward overall scalable privacy 

preservation. 
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